If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-16X-3000=0
a = 1; b = -16; c = -3000;
Δ = b2-4ac
Δ = -162-4·1·(-3000)
Δ = 12256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12256}=\sqrt{16*766}=\sqrt{16}*\sqrt{766}=4\sqrt{766}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{766}}{2*1}=\frac{16-4\sqrt{766}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{766}}{2*1}=\frac{16+4\sqrt{766}}{2} $
| 3m–9=9+3m | | 25p+15p=410 | | 24=x/4 | | (3r+6)/6=(5r-15)/5 | | -2x-2=3(-x+2 | | 5x+12+6x+-10=180 | | (3r+6)/6=(5r-15)/6 | | 2x=34×= | | 8x+36=9x+48 | | 4^(3x+1)=28 | | 45=24+x | | 3x^2-80x-96003x=0 | | y2-16+64=81 | | 2x^2+4x+6=x | | (8+m)/6=4 | | 45=x-24 | | 2m^2-4m-9=m | | 50°C=x°F | | 50°C=x°F. | | (3.2y+6.4)=(-2.9y-3.4) | | (3x-12)+118+97+(2x+7)=360 | | 12-(3c+4)=3(c+4)+2 | | 9+4x=15 | | 15t=2t^2 | | 21x+3+66=90 | | 5x^2-75x+180=0 | | Y=-2/3x-9 | | 21x+3=66 | | 40+3x+10=180 | | x^2-9x-92=0 | | 21x=3+60 | | 21x+3=60 |